Inhalt anspringen

High-Resolution Range-Doppler Imaging from One-Bit PMCW Radar via Generative Adversarial Networks

Schnelle Fakten

  • Interne Autorenschaft

  • Weitere Publizierende

    Jingxian Wang, Moritz Kahlert, Changxu Zhang, Zhaoze Wang, Markus Gardill

  • Veröffentlichung

    • 2025
    • Band 33rd European Signal Processing Conference (EUSIPCO 2025)
  • Titel des Konferenzbands

    33rd European Signal Processing Conference (EUSIPCO 2025)

  • Organisationseinheit

  • Fachgebiete

    • Elektrotechnik allgemein
  • Format

    Konferenzpaper

Zitat

J. Wang, M. Kahlert, T. Fei, C. Zhang, Z. Wang, and M. Gardill, “High-Resolution Range-Doppler Imaging from One-Bit PMCW Radar via Generative Adversarial Networks,” in 33rd European Signal Processing Conference (EUSIPCO 2025), 2025, pp. 1397–1401 [Online]. Available: https://eusipco2025.org/wp-content/uploads/pdfs/0001397.pdf

Abstract

Digital modulation schemes such as phasemodulated continuous wave (PMCW) have recently attracted increasing attention as possible replacements for frequencymodulated continuous wave (FMCW) modulation in future automotive radar systems. A significant obstacle to their widespread adoption is the expensive and power-consuming analog-to-digital converters (ADCs) required at gigahertz frequencies. To mitigate these challenges, employing low-resolution ADCs, such as one-bit, has been suggested. Nonetheless, using one-bit sampling results in the loss of essential information. This study explores two rangeDoppler (RD) imaging methods in PMCW radar systems utilizing neural networks (NNs). The first method merges standard RD signal processing with a generative adversarial network (GAN), whereas the second method uses an end-to-end (E2E) strategy in which traditional signal processing is substituted with an NNbased RD module. The findings indicate that these methods can substantially improve the probability of detecting targets in the range-Doppler domain.

Über die Publikation

Erläuterungen und Hinweise

Diese Seite verwendet Cookies, um die Funktionalität der Webseite zu gewährleisten und statistische Daten zu erheben. Sie können der statistischen Erhebung über die Datenschutzeinstellungen widersprechen (Opt-Out).

Einstellungen (Öffnet in einem neuen Tab)