Study plan
- WP
- 0SWS
- 5ECTS
Compulsory elective modules 0. Semester
Anerkannte Wahlpflichtprüfungsleistung
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
- WP
- 4SWS
- 5ECTS
Compulsory elective modules 2. Semester
Additive Fertigungsverfahren
Datenkommunikation und Mikrocontroller
Energiewandlung
Ergänzungsmodul
Qualitätsmanagementmethoden
Robotik und Handhabungstechnik
Sondergebiete der Ingenieurwissenschaft MEU
Sondergebiete der Ingenieurwissenschaft PES
Sondergebiete der Ingenieurwissenschaft PT
Compulsory elective modules 3. Semester
Module overview
0. Semester of study
Anerkannte Wahlpflichtprüfungsleistung- WP
- 0 SWS
- 5 ECTS
- WP
- 0 SWS
- 5 ECTS
Number
K3 PT PA MEU Anerk
Duration (semester)
1
1. Semester of study
Angewandte Informatik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590492
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
- Software quality
- Modeling and control of technical contexts and technical processes
- Programming and simulation under Simulink, including the creation of physical models
- Programming and simulation with Matlab
- Modeling of decision routines with the Stateflow tool
- Programming of microcontrollers with Matlab and Simulink
- Software solutions for machine learning and deep learning
Contents
In addition to modeling, current topics in mechanical engineering are also covered, such as programming AI, machine learning and deep learning. To this end, image and pattern recognition using neural networks is also covered in this module.
Teaching methods
Participation requirements
Content: Basic knowledge of Matlab / Simulink is required.
Forms of examination
Combination of semester-long partial performance exams (50%) and written exam (50%).
Duration: 60 minutes
Assistance permitted: none
Winter semester:
more extensive written exam (100%)
Duration: 120 minutes
Assistance allowed: none
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Pietruszka, W. D., Glöckler, M.: MATLAB® und Simulink® in der Ingenieurpraxis; Modellbildung, Berechnung und Simulation. Vieweg, 2020
- Onlineressourcen Mathworks
- Matlab Onramp
- Simulink Onramp
- Stateflow Onramp
- Matlab Dokumentation https://de.mathworks.com/help/matlab/
Energie- und Umwelttechnik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590311
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
- take a differentiated view of the challenges of large electricity grids with regard to the energy transition
- distinguish between individual aspects, advantages and disadvantages and emissions of subcomponents
- create independent system simulations in Matlab/Simulink .
- analyze individual components and specific properties based on these simulations. The students can...
- deal with subcomponents in depth and are able to independently refine the simulations using their newly acquired knowledge .
- develop concepts for operating emission-free electricity grids on the basis of simulations
- consider and estimate the costs of different electricity grids. Present the results of individual work in a targeted manner and present them to the course.
Contents
- Large electricity grids and their subcomponents (power plants, renewable energies, grids, controls) Emissions from large electricity grids and their subcomponents
- Challenges of the energy transition
- Simulations in Matlab/Simulink
Teaching methods
- Seminar-style teaching
Participation requirements
Formal: none
Content: none
Forms of examination
The module examination consists of two partial performances:
Part 1:
With > 4 participants, a 75-minute written exam is taken. The exam tests knowledge of the German electricity grid, the systemic relationships of the electricity grid and the application of what has been learned to other topics. The written exam counts for 100% of the overall grade.
For < 4 participants, a 45-minute oral examination is held as part of a technical discussion. The students demonstrate their knowledge of the German electricity grid, their knowledge of the systemic interrelationships of the electricity grid and apply what they have learned to new topics. The technical discussion counts for 100% of the overall grade.
Part 2:
During the semester, students develop an individual specialist topic and a corresponding Simulink simulation model. The specialist topic is presented to the group in a 30-minute lecture and the simulation model including documentation is handed over to the course instructor. The presentation can earn 8% bonus points and the simulation model including documentation can earn a further 8% bonus points in relation to the total number of points for the module.
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Bitterlich; Lohmann: Gasturbinenanlagen. Komponenten, Betriebsverhalten, Auslegung, Berechnung, Springer Verlag, 2. Auflage, 2018
- Schäfer: Systemführung. Betrieb elektrischer Energieübertragungsnetze, Springer Verlag, 2022
- Strauß: Kraftwerkstechnik. Zur Nutzung fossiler, nuklearer und regenerativer Energiequellen, Springer Verlag, 6. Auflage, 2009
- MATLAB Onramp, Simulink Onramp: https://de.mathworks.com/support/learn-with-matlab-tutorials.html
Höhere Mathematik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590011
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Higher linear algebra
- Vector analysis: scalar and vector fields, gradient of a scalar field, divergence and rotation of a vector field, curve and surface integrals, integral theorems of Gauss and Stokes and their physical meaning
- Laplace and Fourier transformations
- Extrema with constraints
- Differential equations (DGL): ordinary DGL of higher order, systems of linear DGL
- Fundamentals of partial differential equations: initial value problems, boundary value problems
Teaching methods
Participation requirements
Content: Basic knowledge from previous Bachelor's degree
Forms of examination
The written exam consists of several tasks corresponding to the topics covered in the lecture and in the exercises.
Permitted aids: script, formulary and a non-programmable calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Herrmann, N.: Mathematik für Ingenieure, Physiker und Mathematiker, Oldenbourg, 2007
- Papula, L.: Mathematik für Ingenieure und Naturwissenschaftler, Bd.3, Vieweg, 2011
Lean Production- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590111
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
- apply lean methods and tools in accordance with VDI 2870-1 and implement measures to reduce waste in direct and indirect areas
- interpret and critically scrutinize the most important key production figures
- visually represent and evaluate the status of a production process of a product family with regard to the flow of materials and information
- identify synergies of lean management, digitalization and resource-efficient production
Contents
- Lean Production / Toyota Production System
- Design principles of holistic production systems:
- Standardization
- Pull principle
- Flow production
- Visual management and key production figures
- Avoidance of waste
- Zero-defect principle
- Employee orientation
- Process mapping and analysis, value stream mapping and design
- Lean, green & digital: factory of the future
Teaching methods
Participation requirements
Content: none
Forms of examination
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Vorlesung: Skript des Lehrenden
- Bertagnolli, F.: Lean Management. Einführung und Vertiefung in die japanische Management-Philosophie, Springer Verlag, Berlin 2018
- Dombrowski, U., Mielke, T. (Hrsg.): Ganzheitliche Produktionssysteme. Aktueller Stand und zukünftige Entwicklungen (VDI Buch). Springer Verlag, 2015
- Westkämper, E.: Einführung in die Organisation der Produktion; Springer Verlag, Berlin 2006
Masterprojekt (Schwerpunkt)- PF
- 12 SWS
- 15 ECTS
- PF
- 12 SWS
- 15 ECTS
Number
590031
Language(s)
de
Duration (semester)
1
Contact time
12 SV / 180 h
Self-study
270 h
Learning outcomes/competences
Students learn how to methodically structure and solve a task, preferably from their chosen field of study, under the guidance of a lecturer using current topics from the subject areas of the Master's degree course.
Management skills
On successful completion of the module, students will be able to ...
- use the instruments of project planning, management and control in various projects safely
to apply and evaluate
- develop a work breakdown structure for more complex projects, derive work packages from it and
to plan these using suitable attributes
- assess responsibilities, costs and resources for more complex projects
- assess conflict situations in projects and identify solutions
- use creativity techniques to solve innovative technical problems
- use the Scrum framework and the Kanban board in the planning and management of projects in practice
- explain the tools and processes for coordinating and managing a project portfolio
Master Project Part 2 - Project Work
Students have the ability to quickly acquire new knowledge methodically and systematically on their own. The final presentation promotes communication skills
Contents
- Writing scientific publications
- Presentation design and presentation
- Scientific disputation of own project contributions
- Teamwork and conflict management
- Self-management
- Further development of technical knowledge and its networking in the areas of production, simulation, design, thermodynamics, mechanics, dynamics, testing, electronics, electrical engineering
- Implementation expertise in the application of various technical topics in mechanical engineering
- The topics from the course areas of the Master's degree program in Mechanical Engineering are handed out by lecturers for processing
- The scope of the work is adapted to the available workload
- Project controlling, planning, management and monitoring
- Success factors in projects (Selected areas of action: Project team, stakeholder management, corporate and project cultures, communication, conflict management)
- Problem-solving and creativity techniques
- Project documentation, project completion and presentation
- Multi-project management and project portfolio management
- Different methods of project management
- Traditional project management
- Agile project management
- Hybrid forms
- Work on the topics by the students in a working group if possible
- The design as well as the implementation of e.g. the required calculations and/or measurements and results are documented in a written paper in accordance with IPMA.
- Final presentation of the work results
Teaching methods
Participation requirements
Content: none
Forms of examination
Management competencies:
1. collaboration in the project 50%
2. handover report and submitted documents 25%
3. presentation 25%
All examinations must be graded at least 4.0 to pass
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Master Project Part 1 - Introduction: 18.75 % * 5/15 = 6.25 %
Management skills: 18.75 % * 5/15 = 6.25 %
Master's Project Part 2 - Project Work: 18.75 % * 5/15 = 6.25 %
Literature
Entsprechend der Aufgabenstellung
Managementkompetenzen
- Andler, N.: Tools für Projektmanagement, Workshop und Consulting: Kompendium der wichtigsten Techniken und Methoden, 6. Auflage, Publicis Erlangen 2015
- Bruno, J.: Projektmanagement - Das Wissen für eine erfolgreiche Karriere, Vdf Hochschulverlag 2003
- Jakoby, W.: Projektmanagement für Ingenieure - Ein praxisnahes Lehrbuch für den systematischen Projekterfolg, 3. Auflage, Wiesbaden 2015
- Kusay-Merkle: Agiles Projektmanagement im Berufsalltag: Für mittlere und kleine Projekte, Springer 2018
- Schelle, H.: Projekte zum Erfolg führen. Projektmanagement systematisch und kompakt. 6. Auflage, DTV-Beck 2010
- Schwaber, K.; Sutherland J.: Der Scrum Guide – Der gültige Leitfaden für Scrum: Die Spielregeln, 2013
Produktentwicklung und CAE- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590211
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Basics of product development
- In-depth introduction to assembly design using parametric design and via installation spaces and references
- Parametric surface modeling
- FE calculation methods based on CAD models
- Application to static calculations of construction modules and assemblies
Teaching methods
Participation requirements
Content: none
Forms of examination
Permitted aids: printed lecture notes without calculated exercises and calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Bonitz, P.: Freiformflächen in der rechnerunterstützten Karosseriekonstruktion und im Industriedesign, Springer, 2009
- Piegl and Tiller, The Nurbs Book, 2. Auflage, Springer
- Sandor, V. et. al., CAx für Ingenieure, 3.Auflage, Springer Vieweg
Spanende Fertigungstechnik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590121
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Basics of chip formation
- Chip formation models
- Mechanical and thermal parameters
- Correlations between materials and chip formation
- Cutting with geometrically defined cutting edge
- Processes and their variants (turning, drilling, milling)
- Tools (cutting materials, coatings)
- Machine tools
- Cutting tools with geometrically indeterminate cutting edge
- Processes and their variants (grinding, honing, finishing)
- Tool design (cutting materials, binders)
- Machine tools
- Special areas of machining production technology
- Micromachining
- Gear manufacturing
- Combination machining
- Cutting production systems
- Presentation of machining production process chains
- Interaction of individual process steps
- Analysis and evaluation of machining production processes (process capability, OEE,...)
Teaching methods
Participation requirements
Content: none
Forms of examination
Final presentation (50%).
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Übung: Verfahrens- und Arbeitsanweisungen im Downloadbereich des Lehrenden.
- Vorlesung: Skript im Downloadbereich des LehrendenWeck, M.; Brecher, C.: Werkzeugmaschinen: Maschinenarten und Anwendungsbereiche. 6. Auflage, Springer Verlag, Berlin/Heidelberg, 2009
- Conrad, K.-J.: Taschenbuch der Werkzeugmaschinen. 2. Auflage, Carl-Hanser-Verlag,
- München/Wien, 2006
- Denkena, B.; Tönshoff, H.K.: Spanen – Grundlagen. 2. Auflage. Springer Verlag, Berlin/ Heidelberg, 2003
- König, W.; Klocke, F.: Fertigungsverfahren Band 1: Drehen, Fräsen, Bohren. 8. Auflage, Springer Verlag, Berlin/Heidelberg, 2008
- König, W.; Klocke, F.: Fertigungsverfahren Band 2: Schleifen, Honen, Läppen. 4. Auflage, Springer Verlag, Berlin/Heidelberg, 2008
- N.N.: DIN 8589ff. Fertigungsverfahren Spanen. Beuth Verlag, Berlin, 2003
Ur- und Umformtechnik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590131
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Original form method
- Metallurgy Fundamentals
- Semi-finished products and steel production
- Additive processes
- Basics of forming technology
- Basics
- Theory of plasticity
- Determination of characteristic values
- Tribology
- Sheet metal forming[SA1]
- Process properties/special features
- Method planning/selection
- Tool and equipment technology
- Forming technology Solid forming[SA2]
- Cold/hot forming
- Stage diagrams and component design
- Toolmaking and Mechanical Engineering
- Simulation in forming technology
- Introduction to FEM
- FE analyses of forming technology issues
Teaching methods
Participation requirements
Content: none
Forms of examination
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Vorlesung: Skript im Downloadbereich des Lehrenden
- Übung: Verfahrens- und Arbeitsanweisungen im Downloadbereich des Lehrenden.
- Bauser et al.: Strangpressen, Aluminium Fachbuchreihe, Aluminium Verlag, 2001
- Doege, E., Behrens, B.-A.: Handbuch Umformtechnik, Springer-Verlag, 2010
- Hill, R.: The Mathematical Theory Of Plasticity (Oxford Classic Texts In The Physical Sciences), Clarendon Press, Oxford, 1948
- Kopp, R., Wiegels H.: Einführung in die Umformtechnik. Verl . Mainz, Aachen, UB Dortmund Sig . L Tn 20/2.
- König, W.: Fertigungsverfahren. Band 5: Blechumformung. VDI Verlag , 1986
- Lange, K.: Umformtechnik Grundlagen, Springer Verlag, 2002, (Auflage 1983 UB Dortmund Sig. T 11561 1)
- Lange, K.: Umformtechnik – Band 3: Blechumformung. Springer-Verlag, Berlin, 1990
- Ostermann, F.: Anwendungstechnologie Aluminium, Springer Verlag, 2007
Advanced CAD / CAM- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PT PS
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
Contents
- CAD systems, geometry model structure, interfaces
- Digitization process, data reduction, surface reconstruction
- Tool definition, determination of the production strategy, cutting value determination, devices
- Multi-axis machining, 3-axis milling of free-form surfaces, 5-axis simultaneous machining
- Ablation/engagement simulation, machine kinematics, process simulation
The practical laboratory course comprises the step-by-step development of the complete machining manufacturing process for complex products, including semi-finished product, tool, production and equipment planning. Based on a 3D model of the component, students generate an executable NC program using various programming strategies. The machining program is verified using machine simulation and by manufacturing the component on existing laboratory equipment.
Teaching methods
Participation requirements
Content: Manufacturing technology
Forms of examination
Duration 120 minutes
Permitted aids: all aids except digital end devices
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Vorlesung: Skript im Downloadbereich des Lehrenden.
- Laborpraktikum: Arbeits- und Verfahrensanweisungen sowie Infoschriften im Downloadbereich des Lehrenden.
- Hehenberger, P.: Computerunterstützte Fertigung. Springer-Verlag, Berlin/Heidelberg. 2011
- Kief, H. B.; Roschiwal, H. A.; Schwarz, C.: CNC-Handbuch. Carl Hanser Verlag, München. 2017
- N.N.: Konstruieren und Fertigen mit SolidWorks und SolidCAM. VDW-Nachwuchsstiftung, Stuttgart. 2012
Dynamische Simulation- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PS
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
- Higher mechanics and its analysis methods.
- Method of multibody simulations and their possibilities and limitations.
The students can:
- Analyze multibody systems using analytical and numerical methods.
- Correctly assess the usefulness of multibody simulations in the investigation of technical problems and develop suitable questions for the use of the method.
- solve technical problems through analytical and interdisciplinary thinking.
- structured work and present and discuss your results in the course of the seminar lecture.
Contents
- Kinematics of multibody systems,
- Numerical methods for the investigation of kinematically determined systems,
- Lagrange mechanics of multibody systems
- Analytical and numerical methods for the investigation of the equations of motion
- Implementation of num. Methods in computer programs
Teaching methods
Participation requirements
Content: none
Forms of examination
Permitted aids: no restriction
Optionally also project work, oral examinations or combination examinations
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Dahmen, W. u. Reusken, A.: Numerik für Ingenieure und Naturwissenschaftler. Springer-Verlag
- Shabana, A.A.: Einführung in die Mehrkörpersimulation. Wiley-VCH
- Vorlesungsskript
- Woernle, C: Mehrkörpersysteme. Springer-Verlag
Elektrische Antriebe und Leistungselektronik- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Building on the fundamentals of electrical machines, this module provides application-oriented basic knowledge of variable-speed electrical drive systems.
The students are familiar with the operating principle of various synchronous and direct current machines, their typical design and their specific operating behavior. They can calculate the operating behavior, load data and operating limits of the aforementioned drive types for variable-speed operation. They can reproduce technical terms and parameters and also classify them correctly. You will be able to evaluate the advantages and disadvantages of the different machines. They know the principles of controlling electric drives.
You can calculate the thermal behavior using simplified thermal models of the machine and power electronics in continuous and short-term operation.
The students can select suitable machines for simple drive applications.
They know the classic methods for controlling a direct current and three-phase asynchronous machine.
The students are able to describe these systems and drives at component and functional level, compare different concepts and evaluate them.
They can name important modern electrical systems and drives in the automotive sector and classify them in the overall vehicle system.
Power electronics:
The students know the structure, functionality and operating behavior of power electronic components and circuits, especially with regard to their implementation in vehicle electronics and electromobility. They understand the functional principles of power electronic converters and are able to make decisions about the selection and use of power electronic circuits and the necessary components for specific applications.
The students have basic and in-depth knowledge in the field of DC/DC converters. They understand the functionality of a converter with a DC link and control methods for power electronics.
You will be able to design parts of power and high-voltage circuits appropriately, dimension components correctly and optimize the circuits.
You will be able to select and dimension suitable assembly and connection technology as well as a heat dissipation concept for power and high-voltage electronics.
Contents
Additional basics of electrical machines
- Brushless DC motors (also micromotors),
- Synchronous machines,
- Asynchronous machines
- Basics for the control of electromechanical actuators
- Basics of frequency converters and their control
- Development of a rotating field
- U/f characteristic curve control of the three-phase asynchronous machine
- Basic principle of field-oriented control
- Application examples: Electric motors in conventional vehicle applications and in electromobility for 48V and high-voltage systems
- Electric and hybrid traction drives: concepts; powertrain structure; powertrain components;
- Special machines: Switched reluctance machine, stepper motors
Power electronics:
- Components of power electronics
- Power diodes (reverse, forward and reverse recovery behavior)
- MOSFET / bipolar transistor
- IGBT (mode of operation, switching behavior, control and protection)
- Novel Si power semiconductors
- Wide-bandgap power semiconductors (features, SiC diodes, transistors)
- Modules (assembly and connection technology, reliability/load cycle stability)
- Qualification of power electronic components
- Heating of power semiconductors: Thermal equivalent circuits, heat sources, operating point calculation, cooling methods
- Multi-quadrant controller: structure, mode of operation, application for controlling a DC machine
- Decrementing Converter: Structure, Functionality, Dynamic Modeling
- Upset adjuster: structure, mode of operation, dynamic modeling
- Converter with DC link: Design, mode of operation, control method, efficiency
- Pulse width and space vector modulation methods
- Application examples: Design and function of power converters and DC/DC converters for vehicle electronics and electromobility
Teaching methods
Participation requirements
Content: none
Forms of examination
Permitted aids: formulary from the lecture and a non-programmable calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Babiel, G., Elektrische Antriebe in der Fahrzeugtechnik: Lehr und Arbeitsbuch, 3. Auflage, Springer Vieweg Verlag, 2014
- Binder, A., Elektrische Maschinen und Antriebe: Grundlagen und Betriebsverhalten, 2. Aufl., Springer V., 2012
- Fräger, K. Permanentmagnet-Synchronantriebe im Feldschwächbetrieb, bulletin.ch, Heft
- Hofmann, P., Hybridfahrzeuge : Ein alternatives Antriebssystem für die Zukunft, Springer Vienna, 2014 Liebl, J., Der Antrieb von Morgen 2017, Proceedings 11. Internat. MTZ Fachtagung Zukunftsantriebe, Springer Vieweg Verlag, 2017
- Tschöke,H. ;Gutzmer, P.; Pfund, T., Elektrifizierung des Antriebsstrangs, Grundlagen vom Mikrohybrid zum vollelektrischen Antrieb, Springer Vieweg Verlag, 2019
Leistungselektronik:
- Babiel, G.; Thoben, M., Bordnetze und Powermanagement, ISBN: 978-3-658-38023-6 , Springer Verlag, 2022
- Jäger, R.; Stein, E., Leistungselektronik: Grundlagen und Anwendungen, VDE-Verlag, 6. Auflage, 2011
- Jäger, R.; Stein, E., Leistungselektronik: Übungen zur Leistungselektronik, VDE-Verlag, 2. Auflage, 2012
- Krüger, M., Grundlagen der Kraftfahrzeugelektronik Schaltungstechnik; 4. Auflage, ISBN: 978-3-446-46320-2 , Hanser Verlag, 2020
- Lutz, J., Halbleiter-Leistungsbauelemente Physik, Eigenschaften, Zuverlässigkeit, Springer V., 2. Auflage, 2012
- Probst, U., Leistungselektronik für Bachelors, Grundlagen und praktische Anw., 4. Auflage, C. Hanser V., 2020
- Reif, K., Generatoren, Batterien und Bordnetze / Konrad Reif, ISBN: 978-3-658-18102-4 , Springer Vieweg Verlag
- Schröder, D., Leistungselektronische Schaltungen: Funktion, Auslegung und Anw., 3. Auflage, Springer V., 2012
Fahrzeugkonstruktion und -produktion- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PT
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
The students have knowledge of the methods of lightweight construction as a cross-sectional science of design, production, materials technology, mechanics, FEM and testing technology. They are proficient in the design of components made of fiber composites. They are also able to carry out simple topology optimization.
Contents
- Construction methods of lightweight construction
- Materials and manufacturing processes in lightweight construction
- Fiber composite materials (GFRP, CFRP), thin-walled profile bars
- Calculation of shear springs and thin-walled profiled bars
- Meshing strategies in the FEM and comparison of solid and shell elements
- FEM calculation of components made of fiber composite materials
- Higher finite element method and topology optimization
Teaching methods
Participation requirements
Content: CAD knowledge is required, basic knowledge of CAD-CAM is an advantage, but not mandatory
Forms of examination
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Baier / Seeßelberg / Specht: Optimierung in der Strukturmechanik, Vieweg-Verlag, 1994
- Bendsoe : Optimization of Structural Topology, Shape and Material, Springer-Verlag, 1995
- Degischer / Lüftl: Leichtbau, Wiley-VCH-Verlag, 2009
- Dreyer: Leichtbaustatik, Teubner-Verlag, 1982
- Fischer: Konstruktion, Berechnung und Bau eines Leichtbaufahrzeuges mit Hilfe computergestützter Methoden (CAD, FEM, MKS), Forschungsbericht FH Dortmund, 2005
- Fischer: Konstruktive Umsetzung der mit Hilfe der Finite-Elemente-Methodeoptimierten Designvarianten in fertigungsgerechte Bauteile, Forschungsbericht FH Dortmund, 2005
- Fischer: Leichtbau in der Fahrzeugtechnik, Berufsbildungswissenschaftliche Schriften, Leuphana-Seminar-Schriften zur Berufs- und Wirtschaftspädagogik, Band 4: Die BBS Friedenstraße auf dem Weg zu einer nachhaltigen Entwicklung, 2010
- Fischer: Zur Berechnung des Rißausbreitungsverhaltens in Scheiben und Platten mit Hilfe eines gemischten finiten Verfahrens, VDI-Verlag, 1991
- Friedrich: Leichtbau in der Fahrzeugtechnik, Springer Vieweg - Verlag, 2017
- Harzheim: Strukturoptimierung, Verlag Harri Deutsch, 2008
- Henning / Moeller: Handbuch Leichtbau, Hanser-Verlag, 2011
- Hill: Bionik – Leichtbau, Knabe-Verlag, 2014
- Issler / Ruoß / Häfele: Festigkeitslehre - Grundlagen, Springer-Verlag, 1997
- Kirsch: Structural Optimization, Springer-Verlag, 1993
- Klein und Gänsicke: Leichtbau-Konstruktion, 11. Auflage, Springer-Vieweg-Verlag, 2019
- Kossira: Grundlagen des Leichtbaus, Springer-Verlag, 1996
- Linke: Aufgaben zur Festigkeitslehre für den Leichtbau, Springer Vieweg - Verlag, 2018
- Linke, Nast: Festigkeitslehre für den Leichtbau, Springer Vieweg - Verlag, 2015
- Nachtigall: Biomechanik, Vieweg-Verlag, 2001
- Radaj, Vormwald: Ermüdungsfestigkeit, Grundlagen für Ingenieure, Springer, 3. Auflage
- Rammerstorfer: Repetitorium Leichtbau, Oldenbourg-Verlag, 1992
- Sauer: Bionik in der Strukturoptimierung, Vogel-Verlag, 2018
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag, 2007
- Schumacher: Optimierung mechanischer Strukturen, Springer-Verlag, 2005
- Siebenpfeiffer: Leichtbau-Technologien im Automobilbau, Springer Vieweg - Verlag, 2014
- von Gleich: Bionik, Teubner-Verlag, 1998
- Wiedemann: Leichtbau, Band 1: Elemente, Springer-Verlag, 1986
- Wiedemann: Leichtbau, Band 2: Konstruktion, Springer-Verlag, 1989
Höhere technische Akustik- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PS MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
In addition, you will learn how to use acoustic measurement technology and the procedure for machine and vehicle acoustic analysis, e.g. for determining natural frequencies or critical transfer paths. Students are thus able to describe the overall vibration behavior of technical systems and transfer this to the design of low-noise and low-vibration machines.
Furthermore, the effect of noise on people and the social significance of noise emissions are known. In addition to objective limit values, students learn about psychoacoustic effects and methods for evaluating subjective noise impressions and can use these specifically for noise assessment.
Contents
Sound generation and propagation, airborne and structure-borne sound, wave propagation in various transmission media
Acoustic measurement methods:
Noise emission measurements, experimental measurement methods for determining the vibration and noise behavior of components and systems
Human hearing and psychoacoustic effects:
Psychoacoustic basics, analyses of psychoacoustics (e.g. loudness, sharpness, roughness, modulation strength, tonality), listening tests, ethical issues
Vibrational behavior of structures:
Natural frequencies and mode shapes, modal damping, modal analysis, transfer path analysis
Machine acoustics and vehicle acoustics:
Noise and vibration of machines and components, engine acoustics, transmission acoustics, silencers, absorbers
Low-noise design and sound insulation:
Sound insulation and damping, development parameters and design influences for the reduction and optimization of noise and vibration behavior, practical examples
Teaching methods
Participation requirements
Content: Knowledge of acoustics or vehicle acoustics events is an advantage but not a prerequisite for participation.
Forms of examination
Permitted aids: TR, 1 DIN A4 sheet of single-sided self-written FS
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Henn/Sinambari/Fallen: Ingenieurakustik, Vieweg+Teubner Verlag, 2008
- Kollmann, Maschinenakustik, Springer-Verlag, 1993
- Möser: Technische Akustik, Springer-Verlag, 2015
- Pflüger, Brandl, Bernhard, Feitzelmayer: Fahrzeugakustik, SpringerWienNewYork, 2010
- Schirmer (Hrsg.): Technischer Lärmschutz, Springer, 2006
- Zeller: Handbuch Fahrzeugakustik, Springer Vieweg Verlag, 2018
Thermo- und Fluiddynamik- WP
- 5 SWS
- 5 ECTS
- WP
- 5 SWS
- 5 ECTS
Number
K2 PS MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
- have in-depth knowledge of material properties, heat and mass transfer and the calculation of fluid dynamic processes in combination with heat and mass transfer, with and without phase change. master the modeling of use cases of thermodynamic and fluid dynamic calculations.can assess the technical and social significance of combined thermodynamic and fluid mechanics tasks and attach importance to them.are able to solve tasks and problems that are presented to them in this course
Contents
- Stationary and transient heat conduction, heat transfer, heat transfer
- Instationary heating and cooling processes, radiation and absorption
- Similarity theory of heat transfer, pinch-point method
- Dimensionless parameters for recording heat and mass transfer in different flow forms
- Types and designs of heat transfer
- Heat transfer with phase change (evaporation and condensation) with dimensionless parameters
- Evaporation with bubble boiling, transition boiling and film boiling
- Condensation with droplet and film condensation, Nusselt's water skin theory, condensate flow
- Calculation methods for material properties
- Analogy to mass transport, diffusion, mass transfer, mass passage, layer model
- Phase boundaries and boundary layer theory, friction
- Pressure loss of different geometries, flow around and through, supporting force concept
- Diffusers, confusers, Laval nozzle
- Conservation equations, Bernoulli equation, swirl theorem, momentum theorem
- Fundamentals of turbomachinery
- Gas dynamics, flow of compressible fluids, subsonic and supersonic flow based on critical ratios
Teaching methods
- Seminar-style lectures
- Exercises
.
Participation requirements
Content: none
Forms of examination
Duration: 120 minutes
Permitted aids:
- a DIN A4 double-sided self-written collection of formulas
- non-programmable pocket calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Baer; Stephan: Wärme- und Stoffübertragung, Springer Verlag, 10. Auflage, 2019
- Sieckmann; Thamsen; Derda: Strömungslehre für den Maschinenbau, Springer Verlag, 2. Auflage, 2019
- Siegloch: Technische Fluidmechanik, Springer Verlag, 11. Auflage, 2022
- VDI-Wärmeatlas, Springer Verlag, 12. Auflage, 2019
- Wagner,W.: Wärmeaustauscher, Vogel Verlag, 4. Auflage, 2009
2. Semester of study
Nachhaltigkeit und Ressourcen- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590321
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
. This course and the confident use of the UMBERTO software tool enable students to position themselves well on the job market, as the software is an established LCA tool at research institutes as well as in industry. The learning objectives of the course include the following points:
- The students learn to actively participate in the development of a sustainable society with a high degree of practical relevance.
- Students learn to incorporate the three pillars of sustainability (environment, economy and society) into an overall assessment of products and production processes in their analysis and thus implement the concept of sustainability holistically in development.
- Students can recognize the fundamental interrelationships of sustainable resource use and have the ability to identify concrete potential for optimization.
- Students can critically analyze the resource use of technical processes along the entire value chain and identify key factors influencing sustainability.
- Students learn about examples of sustainable resource use and know how to correctly classify their influence on various limiting factors such as water, soil and air.
- The students learn to combine the aforementioned points in a computer-aided material flow and sustainability analysis. In doing so, they acquire additional knowledge of basic calculation methods for the design and evaluation of processes, taking ecological and Business Studies aspects into account in addition to technical issues.
Contents
In the sense of blended learning, you will independently acquire the essential theoretical content on the topic block 'Sustainability and Resources' via an e-learning format, consisting of reading texts available online (readings) and answering associated learning and exercise questions.
In the block seminar part, the focus is on supervised learning of computer-aided material flow and sustainability analysis for selected technical systems and processes that are relevant to you as part of the specialization in mechanical, energy and environmental engineering. In supervised small groups of 2-3 people, you will receive an introduction to the software and research the information and data relevant to the underlying technical processes (research phase).
In the subsequent implementation phase, the students use the researched information and the software to model the technical processes along the entire value chain of the relevant industrial products and carry out a life cycle assessment and scenario analysis of these processes, taking into account various limiting factors as part of a Life Cycle Impact Assessment (LCIA). In the final part of the block seminar, you will prepare analyses and reports on specific technical optimization potentials based on the knowledge gained in this way and will be able to name the key factors influencing the sustainability of the underlying processes for more sustainable product development/production.
Teaching methods
Participation requirements
Content: Knowledge of thermodynamics is required.
Forms of examination
Permitted aids: none
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
DIN EN ISO 14044:2021-02, Umweltmanagement_- Ökobilanz_- Anforderungen und Anleitungen (ISO_14044:2006_+ Amd_1:2017_+ Amd_2:2020); Deutsche Fassung EN_ISO_14044:2006_+ A1:2018_+ A2:2020
ILCD (2010): ILCD Handbook - General guide on LCA - Detailed guidance, Luxembourg: Publications Office (EUR (Luxembourg), 24708). Online verfügbar unter https://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-General-guide-for-LCA-DETAILED-GUIDANCE-12March2010-ISBN-fin-v1.0-EN.pdf , zuletzt geprüft am 09.10.2023
Klöpffer, Walter; Grahl, Birgit (2009): Ökobilanz (LCA). Ein Leitfaden für Ausbildung und Beruf. 1. Auflage März 2009. Weinheim: WILEY-VCH. Online verfügbar unter http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10303941
Schmidt, Mario; Häuslein, Andreas (1997): Ökobilanzierung mit Computerunterstützung. Berlin, Heidelberg: Springer Berlin Heidelberg. Online verfügbar unter: https://link.springer.com/book/10.1007/978-3-642-80236-2
Strukturmechanik (FEM)- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590231
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
Contents
- In-depth treatment of mechanics in the areas of strength of materials and
- Dynamics (stress states, tent and fatigue strength, free and excited vibrations)
- Theoretical treatment of the finite element method in mechanics Calculation of individual components and assemblies Design improvement and optimization
- Calculations with regard to material behavior (elastic, plastic)
Teaching methods
Participation requirements
Content: none
Forms of examination
Assistance permitted:
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Bathe, K.-J.: Finite-Element-Methoden
- Gebhardt, Ch.: FEM mit ANSYS Workbench
- Vorlesungsumdruck
Strömungssimulation (CFD)- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590221
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Navier-Stokes equations
- Discretization using the finite volume method
- Physics and main theory of turbulence
- Numerical turbulence modeling
- Mesh generation
- Network study for off-grid results
- Parallelization of bills
- Calculation domain selection and software settings matching fluid mechanics problems
Teaching methods
Internship accompanying the lecture: Independent completion of selected simulation tasks on the computer in individual or team work.
Project work: Presentation of independently developed topics by the students while practicing forms of presentation that lead to scientific discourse and in which the students are highly involved.
Participation requirements
Content: Knowledge of fluid mechanics and thermo-fluid dynamics
Forms of examination
Permitted aids: none
An oral examination may be offered if no more than ten students have registered for the examination.
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Lechener, S.: Numerische Strömungsberechnung schneller Einstieg durch ausführliche praxisrelevante Beispiele; Vieweg+Teubner Verlag
- Marciniak, V.: Unterlagen zur Vorlesung; FH Dortmund; aktuelle Version in ILIAS
- Versteeg, H.K.; Malalasekera W.: An Introduction to Computational Fluid Dynamics-The Finite Volume Method; 2. Auflage; Pearson
Systemtheorie- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590041
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
- Signals and systems
- Signal synthesis and Test functions
- Linear, time-invariant systems
- Modeling and simulation in the original domain
- Laplace transformation
- Transfer functions
- Impulse, step, rise and oscillation response
- Modeling and simulation in the image domain
- Analysis and design of control and regulation systems
Teaching methods
Participation requirements
Content: none
Forms of examination
Allowed aids: all non-electronic aids, non-programmable calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Föllinger, O.: Regelungstechnik, Berlin: VDE Verlag, 2016
- Föllinger, O.: Laplace-, Fourier- und z-Transformation, Berlin: VDE Verlag, 2011
- Frey, T., Bossert, M.: Signal- und Systemtheorie, Wiesbaden: Vieweg+Teubner, 2008
- Lunze, J.: Regelungstechnik I, Berlin: Springer Vieweg, 2016
- Lunze, J.: Automatisierungstechnik, DeGruyter Oldenbourg-Verlag, 2016
- Weber, H., Ulrich, H.: Laplace-, Fourier- und z-Transformation, Wiesbaden: Vieweg+Teubner, 2012
Verfahrenstechnik- PF
- 4 SWS
- 5 ECTS
- PF
- 4 SWS
- 5 ECTS
Number
590331
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
- understand and explain the principle of mechanical stirring and mixing technology, mechanical separation technology as a subfield of mechanical process engineering (MVT), thermal separation of materials as a subfield of thermal process engineering (TVT)
- Master and describe the methods discussed for dimensioning static mixers and stirred tanks, apparatus and systems for particle separation, separation apparatus for rectification, absorption/desorption
- learn how to select suitable equipment, as well as the possible applications and limits of the processes and can assess them
- can master and evaluate the balancing (quantity and energy balance) of equipment and plant components for agitating and mixing technology, particle separation and thermal material separation (MVT, TVT)
- expand their application and system expertise, with which they can argue.
Contents
- Stirring and mixing
- Stationary and transient sedimentation, gravity and centrifugal separators
- Particle separation from gases and liquids
- Mechanical liquid separation
- Analogy between heat transfer and mass transfer, transient heating and cooling processes
- Evaporation and condensation (water-skin theory)
- Phase equilibria in ideal and real mixtures
- Azeotropes, boiling and equilibrium diagram, open bubble distillation
- Continuous rectification: McCabe-Thiele plate number, Fenske/Underwood/Gilliland, choice of reflux ratio, volume and heat balance, plate efficiency
- Design and dimensioning of soil columns, packed columns and packed columns (HTU-NTU method)
Teaching methods
.
Participation requirements
Content: Process engineering in the previous bachelor's/diploma degree program
Forms of examination
Permitted aids: Self-written FS, 1 DIN A4 sheet double-sided, non-programmable TR
The module examination consists of a written exam in which students are expected to recall basic knowledge of mechanical and thermal process engineering in the form of calculation tasks. In addition, they should be able to transfer this knowledge to practical problems and apply it where necessary.
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Christen, D.: Praxiswissen der chemischen Verfahrenstechnik, Springer Verlag (neuste Auflage)
- Kraume, M.: Transportvorgänge in der Verfahrenstechnik, Springer Verlag (neuste Auflage)
- Sattler, K., Adrian, T.: Thermische Trennverfahren, Wiley-VCH Verlag (neuste Auflage)
- Schönbucher, A.: Thermische Verfahrenstechnik, Springer Verlag (neuste Auflage)
- Stieß, M.: Mechanische Verfahrenstechnik 1 und 2, Springer Verlag (neuste Auflage)
Additive Fertigungsverfahren- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PT
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90
Learning outcomes/competences
Contents
- Basics, definitions and historical context
- 3D printing process: Discussion of the main processes, definition and differentiation of the processes, advantages and disadvantages, fields of application
- Designing for production, data preparation, component post-processing
- Practical work with various 3D printingsystems
- Business Studies, component quality and use cases in industry
- Market trends and current developments
Teaching methods
Participation requirements
Content: CAD knowledge is required, SolidWorks knowledge is desirable
Forms of examination
Allowed aids: calculator
If the number of participants is low, a term paper will be written. The form of examination will be announced in the first lecture.
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Gebhardt: Additive Fertigungsverfahren; Hanser-Verlag
- Richard, Schramm, Zipsner: Additive Fertigung von Bauteilen und Strukturen; Springer Fachmedien
- Milewski: Additive Manufacturing of Metals, Springer International Publishing
Datenkommunikation und Mikrocontroller- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
In the field of microcontrollers, students have in-depth specialist knowledge of how microcontrollers are structured, how they are programmed and which development tools are used in vehicle electronics. The focus is on the special technical features that must be taken into account for correct functioning in the vehicle. This relates to the hardware-related software, including measures to ensure electromagnetic compatibility.
The theoretical knowledge is supplemented by practical labs in which students implement and test CAN communication with microcontrollers (Arduino) and MATLAB / Simulink.
Contents
The introduction and investigation of the CAN bus takes place in the laboratory for vehicle electronics using tools from Vector: CANoe, CAN-Scope, CAN stress module, LIN module, FlexRay module and Ethernet module.
During the seminar, participants will work in small groups to solve various tasks relating to the CAN BUS.
Another focus is on teaching the special features that must be taken into account when installing microcontrollers in vehicles.
In order to learn how to use the resources on a microcontroller, various applications are developed on an Arduino with MATLAB / Simulink in the practical exercises.
Teaching methods
Participation requirements
Content: none
Forms of examination
Permitted aids: calculator
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Beierlein, T. / Hagenbruch, O.: Taschenbuch Mikroprozessortechnik, Hanser Verlag
- Bosch, Kraftfahrtechnisches Taschenbuch, VDI-Verlag
- Etschberger,K.: Controller Area Network, Hanser Verlag, 2002
- Grzemba, A./ H.C. von der Wense: LIN-BUS, Franzis Verlag
- Grzemba, A.: MOST, Franzis Verlag
- Herrmann, D.: Effektiv Programmieren in C und C++, Vieweg Verlag
- Kernighan, R.: Programmieren in C, Hanser Verlag
- Krüger, M.: Grundlagen der Kraftfahrzeugelektronik Schaltungstechnik 4. Auflage, Hanser Verlag, 2020
- Lawrenz, W.: CAN Controller Area Network Grundlagen und Praxis, Hüthig Verlag
- Rausch, M.: FlexRay, Hanser Verlag
- Reif, K.: Automobil-Elektronik, Vieweg Verlag
Energiewandlung- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
They are familiar with the state of the art of selected energy systems and the current state of research.
They acquire the ability to think in a networked and critical way, as well as interdisciplinary methodological skills.
The course mainly teaches:
Technical competence 20% Methodological competence 40% System competence 20% Social competence 20%
Contents
Combined heat and power (CHP), solar thermal energy, photovoltaics, geothermal energy, steam power and combined cycle power plants, boiler systems, fuel cell systems. In addition to the purely physical, technical understanding, it also deals with the energy-economic boundary conditions and material resources.
Significance of the doubling of global energy demand by 2050, changes to ecosystems and consequences, systematic correlation of resource supply and habitat threats.
Teaching methods
Participation requirements
Content: none
Forms of examination
All examinations must be graded at least 4.0 to pass
.
Alternatively: written examination paper; oral examinations or combination examinations
Type of examination will be announced in the first lecture
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Quaschning, V.: Regenerative Energiesysteme
- Stan, C.: Thermodynamik des Kraftfahrzeugs
- Watter, H.: Nachhaltige Energiesysteme
- Zahoransky, R: Energietechnik
Ergänzungsmodul- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K3 PT PA MEU
Duration (semester)
1
Qualitätsmanagementmethoden- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PT PS MEU
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
- carry out the FMEA within development and manufacturing processes
- apply selected statistical methods of quality management to monitor and control processes
- interpret calculated results in the context of product development and production and critically question statistical analyses
- carry out machine and process capability studies and interpret their results
- Implement practical methods for problem definition and analysis as well as solution development
- select and apply suitable measurement systems for simple verification and validation tasks
Contents
- Concepts of quality, quality characteristics
- Preventive methods of quality management (in particular FMEA)
- Statistical methods in quality management
- Basic statistics
- Measurement system analysis as a prerequisite for process capability analyses
- Distribution types
- Basics and applications of inferential statistics, hypothesis testing
- Visualization of data
- Correlation, linear regression analysis
- Design of Experiments (DOE)
- Manufacturing process quality (in particular SPC, process stability and capability)
- Methods of reactive and preventive quality management in the problem-solving process
Teaching methods
Participation requirements
Content: none
Forms of examination
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- AIAG & VDA: FMEA-Handbuch, Design-FMEA, Prozess-FMEA, FMEA-Ergänzung - Monitoring & Systemreaktion, 2019
- Brückner, C.: Qualitätsmanagement: Das Praxishandbuch für die Automobilindustrie, Hanser: München 2019
- Edgar, D; Schulze, A.: Eignungsnachweis von Prüfprozessen, Hanser: München, 2017
- Skript des Lehrenden
- VDA QMC: Reifegradabsicherung für Neuteile, VDA: Berlin, 2022
- VDA QMC: Sicherung der Qualität von Lieferungen, VDA: Berlin, 2022
Robotik und Handhabungstechnik- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K2 PT
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Using the example of a system environment consisting of a workpiece transport system, a flexible AnyFeeder feeder and several robot systems, students will be able to implement different tasks. They are able to independently solve complex assembly requirements in the interaction of robots and image processing for process control. To optimize the process, they can optimize the motion sequences and process times and document the system solutions and programs in accordance with standards.
Contents
- Definition of robots and robot systems
- Applications and operating conditions
- Types of robots, kinematic structures and drive systems
- Coordinate systems and coordinate transformations
- Robot control and regulation
- Actuators, sensors and measurement technology
- Programming and simulation of robots
- Safety aspects when using robots
Teaching methods
Participation requirements
Content: none
Forms of examination
Permitted aids: none
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Adept, V+ User Manual; Adept Sigt User Guide, 2019
- Hesse, S.: Taschenbuch Robotik - Montage - Handhabung; Hanser, 2010
- Maier, H.: Grundlagen der Robotik; VDE-Verlag, 2022
- Mareczek, J.: Grundlagen der Roboter-Manipulatoren, Band 1 & 2. Springer, 2020
- Weber, W.: Industrieroboter, Methoden der Steuerung und Regelung; Fachbuchverlag Leipzig, 2019
- VDI R. 2860: Montage- und Handhabungstechnik. Handhabungsfunktionen, Handhabungseinrichtungen, Begriffe, Definitionen, Symbole; Beuth, 05/1990
Sondergebiete der Ingenieurwissenschaft MEU- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K3 MEU
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
Teaching methods
The content of the course can be deepened in an application-oriented manner through exercises, laboratory practicals, excursions and/or contributions from guest lecturers.
Participation requirements
Content: none
Forms of examination
Optional project work during the semester as partial examinations
or term papers and oral examinations as well as combination examinations
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Skriptum und Foliensätze der/des Lehrenden
- Fachspezifische Literaturempfehlungen der/des Lehrenden werden zu Beginn der Veranstaltung bekannt gegeben
- Bender, B.; Göhlich, D. (Hrsg.): Dubbel Taschenbuch für den Maschinenbau. Springer-Verlag, Berlin-Heidelberg, 26. Auflage, 2021 Edition. ISBN: 978-3662620182
- Czichos, H.; Hennecke, M.; Akademischer Verein Hütte e.V. (Hrsg.): Hütte. Das Ingenieurwissen. Springer-Verlag, Berlin-Heidelberg, 33. Auflage, 2007. ISBN: 978-3540718512
Sondergebiete der Ingenieurwissenschaft PES- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K3 PS
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
Teaching methods
The content of the course can be deepened in an application-oriented manner through exercises, laboratory practicals, excursions and/or contributions from guest lecturers.
Participation requirements
Formal: none
Content: none
Forms of examination
Optional project work during the semester as partial examinations
or term papers and oral examinations as well as combination examinations
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Skriptum und Foliensätze der/des Lehrenden
- Fachspezifische Literaturempfehlungen der/des Lehrenden werden zu Beginn der Veranstaltung bekannt gegeben
- Bender, B.; Göhlich, D. (Hrsg.): Dubbel Taschenbuch für den Maschinenbau. Springer-Verlag, Berlin-Heidelberg, 26. Auflage, 2021 Edition. ISBN: 978-3662620182
- Czichos, H.; Hennecke, M.; Akademischer Verein Hütte e.V. (Hrsg.): Hütte. Das Ingenieurwissen. Springer-Verlag, Berlin-Heidelberg, 33. Auflage, 2007. ISBN: 978-3540718512
Sondergebiete der Ingenieurwissenschaft PT- WP
- 4 SWS
- 5 ECTS
- WP
- 4 SWS
- 5 ECTS
Number
K3 PT
Language(s)
de
Duration (semester)
1
Contact time
4 SV / 60 h
Self-study
90 h
Learning outcomes/competences
Contents
Teaching methods
The content of the course can be deepened in an application-oriented manner through exercises, laboratory practicals, excursions and/or contributions from guest lecturers.
Participation requirements
Content: none
Forms of examination
Optional project work during the semester as partial examinations
or term papers and oral examinations as well as combination examinations
Requirements for the awarding of credit points
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Literature
- Skriptum und Foliensätze der/des Lehrenden
- Fachspezifische Literaturempfehlungen der/des Lehrenden werden zu Beginn der Veranstaltung bekannt gegeben
- Bender, B.; Göhlich, D. (Hrsg.): Dubbel Taschenbuch für den Maschinenbau. Springer-Verlag, Berlin-Heidelberg, 26. Auflage, 2021 Edition. ISBN: 978-3662620182
- Czichos, H.; Hennecke, M.; Akademischer Verein Hütte e.V. (Hrsg.): Hütte. Das Ingenieurwissen. Springer-Verlag, Berlin-Heidelberg, 33. Auflage, 2007. ISBN: 978-3540718512
3. Semester of study
Thesis und Kolloquium- PF
- 0 SWS
- 30 ECTS
- PF
- 0 SWS
- 30 ECTS
Number
103
Language(s)
de
Duration (semester)
1
Contact time
-
Self-study
900 h
Learning outcomes/competences
In particular, the student demonstrates the ability to acquire new knowledge quickly, methodically and systematically on their own.
The student can present and explain the results of their work in an oral presentation and examination.
Contents
The Master's thesis consists of the independent completion of an engineering task from the subject areas of the Master's degree course in Mechanical Engineering, which can be completed under the supervision of a professor involved in the Master's degree course both in research facilities at the university and in industry. The thesis must be submitted in written form to present the scientific methods and results applied.
Colloquium:
A colloquium in the form of an oral examination takes place at the end of the course. The colloquium serves to determine whether the candidate is able to orally present, justify and assess the results of the thesis, its technical and methodological foundations, its cross-module connections and its extracurricular references.
Teaching methods
Participation requirements
Forms of examination
. The colloquium is an oral examination lasting a minimum of 30 minutes and a maximum of 45 minutes and is jointly conducted and assessed by the examiners of the Master's thesis. For the conduct of the colloquium, the provisions of the examination regulations applicable to oral module examinations shall apply accordingly.
Requirements for the awarding of credit points
Only who can be admitted to the colloquium.
- has provided proof of enrolment in the Master's in Mechanical Engineering study program
- has earned a total of 60 ECTS in the degree program,
- has earned 27 ECTS in the Master's thesis.
Applicability of the module (in other degree programs)
Importance of the grade for the final grade
Colloquium: 5%